Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chin Herb Med ; 16(1): 106-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38375049

ABSTRACT

Objective: Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro. Methods: The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining. Results: The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-ß response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism. Conclusion: Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.

2.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38157008

ABSTRACT

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Subject(s)
Colitis , Saponins , Rats , Mice , Animals , Pyruvate Carboxylase/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Saponins/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Macrophages/metabolism , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Mice, Inbred C57BL , Disease Models, Animal
3.
Biochem Pharmacol ; 220: 116004, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142837

ABSTRACT

Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Colorectal Neoplasms , Humans , Animals , Mice , Ephrin-B3 , NF-kappa B/metabolism , Colitis/chemically induced , Colitis/complications , Colitis/metabolism , Carcinogenesis , Azoxymethane/toxicity , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Colorectal Neoplasms/metabolism
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194958, 2023 09.
Article in English | MEDLINE | ID: mdl-37453648

ABSTRACT

Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.


Subject(s)
CLOCK Proteins , Lysine , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Lysine/metabolism , Acetylation , Circadian Rhythm/genetics , Protein Processing, Post-Translational
5.
J Proteome Res ; 22(7): 2352-2363, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37285312

ABSTRACT

Protein aggregates play crucial roles in the development of neurodegenerative diseases and p62 is one of the key proteins regulating the formation of protein aggregates. Recently, it has been discovered that depletion of several key enzymes including UFM1-activating enzyme UBA5, UFM1-conjugating enzyme UFC1, UFM1-protein ligase UFL1, and UFM1-specific protease UfSP2 in the UFM1-conjugation system induces p62 accumulation to form p62 bodies in the cytosol. However, it is unknown whether UfSP1 participates in the formation of p62 bodies and whether its enzymatic activity is required for this process. Here, the proximity labeling technique and quantitative proteomics identify SQSTM1/p62 as a UfSP1-interacting protein. Coimmunoprecipitation reveals that p62 indeed interacts with UfSP1 and the immunofluorescence experiment discloses that UfSP1 colocalizes with p62 and promotes the formation of p62-mediated protein aggregates. Mechanistic studies unveil that UfSP1 binds to the ubiquitin-associated domain of p62 and promotes the interaction between p62 and ubiquitinated proteins, thereby increasing the formation of p62 bodies. Interestingly, we further demonstrate that both the catalytic active and inactive UfSP1 promote the formation of p62 bodies through the same mechanism. Taken together, this work discovers that UfSP1 exhibits a noncanonical function independent of its protease activity in the p62 body formation.


Subject(s)
Protein Aggregates , Proteomics , Ubiquitinated Proteins , Protein Domains , Peptide Hydrolases
6.
J Biol Chem ; 299(4): 103025, 2023 04.
Article in English | MEDLINE | ID: mdl-36805336

ABSTRACT

Gastric cancer is one of the cancers with high morbidity and mortality worldwide. The aryl sulfonamide indisulam inhibits the proliferation of several types of cancer cells through its function as a molecular glue to promote the ubiquitination and degradation of RNA-binding motif protein 39 (RBM39). However, it is unknown whether and how indisulam regulates the migration of cancer cells. In this work, using label-free quantitative proteomics, we discover that indisulam significantly attenuates N-cadherin, a marker for epithelial to mesenchymal transition and migration of cancer cells. Our bioinformatics analysis and biochemical experiments reveal that indisulam promotes the interaction between the zinc finger E-box-binding homeobox 1 (ZEB1), a transcription factor of N-cadherin, and DCAF15, a substrate receptor of CRL4 E3 ubiquitin ligase, and enhances ZEB1 ubiquitination and proteasomal degradation. In addition, our cell line-based experiments demonstrate that indisulam inhibits the migration of gastric cancer cells in a ZEB1-dependent manner. Analyses of patient samples and datasets in public databases reveal that tumor tissues from patients with gastric cancer express high ZEB1 mRNA and this high expression reduces patient survival rate. Finally, we show that treatment of gastric tumor samples with indisulam significantly reduces ZEB1 protein levels. Therefore, this work discloses a new mechanism by which indisulam inhibits the migration of gastric cancer cells, indicating that indisulam exhibits different biological functions through distinct signaling molecules.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Ubiquitination , Sulfonamides/pharmacology , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Cell Movement , Cadherins/genetics , Cadherins/metabolism
7.
iScience ; 25(12): 105511, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36437877

ABSTRACT

Metastatic cancers and recurrent cancers are diverse, different from primary cancers, and organ-dependent. However, how strong are across-cancer immune responses among different types of cancers remain unclear. Herein, vaccines-encapsulated-whole-components-of-tumor-tissue (VEWCOTT) were applied to demonstrate the across-cancer immune responses, thanks to inducing pan-clones T-cell immune responses. Either lung-cancer-tissue- or melanoma-tissue-based VEWCOTT simultaneously prevented melanoma, lung cancer, hepatoma, and metastatic cancer, which showed that strong across-cancer immune responses were induced. Both nanovaccines and microvaccines showed potent across-cancer prevention efficacy. VEWCOTT induced tumor-specific T cells in peripheral immune organs and major organs, and adjusted the immune-microenvironment of cancer-colonized organs. In addition, the allograft of T cells from VEWCOTT immunized mice to allogeneic naive mice efficiently prevent various cancers. Many neoantigens are shared by melanoma cells and lung cancer cells. Across-cancer immune responses exist among different types of cancers, and thus VEWCOTT has the advantage of simultaneously preventing cancer metastasis and cancers in different organs.

8.
J Exp Clin Cancer Res ; 41(1): 274, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109793

ABSTRACT

BACKGROUND: Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism. METHODS: The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting. RESULTS: First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy. CONCLUSIONS: This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.


Subject(s)
Carcinoma, Pancreatic Ductal , DEAD-box RNA Helicases , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , DEAD-box RNA Helicases/metabolism , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Humans , Hypoxia , Mice , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Gemcitabine , Pancreatic Neoplasms
9.
Nat Commun ; 13(1): 5453, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114190

ABSTRACT

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.


Subject(s)
RNA Polymerase II , SMN Complex Proteins , Humans , Motor Neurons/metabolism , Muscular Atrophy, Spinal/metabolism , RNA Polymerase II/drug effects , RNA Polymerase II/metabolism , SMN Complex Proteins/antagonists & inhibitors , SMN Complex Proteins/drug effects , SMN Complex Proteins/metabolism
10.
J Proteome Res ; 21(9): 2160-2172, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35926154

ABSTRACT

Gastric cancer is one of the cancers with the highest morbidity and mortality. Although several therapeutic approaches have been developed to treat this disease, the overall survival rate is still very low due to metastasis, drug resistance, and so forth. Therefore, it is necessary to discover new regulatory molecules and signaling pathways that modulate the metastasis of gastric cancer cells. A Disintegrin And Metalloprotease 12 (ADAM12) was highly expressed in gastric cancer tissues and presented in the patient urine. However, it is unclear whether and how ADAM12 regulates the migration of gastric cancer cells. In this work, we used the secretome protein enrichment with click sugars (SPECS) method to purify the secreted glycosylated proteins and performed quantitative proteomics to identify the secreted proteins that were differentially regulated by ADAM12S, the short and secreted form of ADAM12. Our proteomic and biochemical analyses revealed that ADAM12S upregulated the cell surface glycoprotein CD146, a cell adhesion molecule and melanoma marker, which was dependent on the catalytic residue of ADAM12S. Furthermore, we discovered that the ADAM12S-enhanced migration of gastric cancer cells was, at least partially, mediated by CD146. This work may help to evaluate whether ADAM12 could be a potential therapeutic target for the treatment of gastric cancer patients.


Subject(s)
Proteomics , Stomach Neoplasms , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM12 Protein/genetics , CD146 Antigen , Humans , Membrane Proteins/metabolism , Proteomics/methods , Stomach Neoplasms/genetics
11.
J Pharm Biomed Anal ; 206: 114352, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34509662

ABSTRACT

Lung cancer has high morbidity and mortality and small cell lung cancer (SCLC) is a highly invasive malignant tumor with a very unfavorable survival rate. Early diagnosis and treatment can result in better prognosis for the SCLC patients but current diagnostic methods are either invasive or incapable for large-scale screen. Therefore, discovering biomarkers for early diagnosis of SCLC is of importance. In this work, we covalently coupled Concanavalin A (ConA) to functionalized magnetic nanoparticles to obtain magnetic ConA-nanoparticles (ConA-NPs) for the enrichment of glycosylated proteins. We then purified glycosylated proteins in 36 urine samples from 9 healthy controls, 9 SCLC patients, 9 lung adenocarcinoma (LUAD) patients, and 9 lung squamous cell carcinoma (LUSC) patients. The purified glycosylated proteins were digested and analyzed by LC-MS/MS for identification and quantification. Among the 398 identified proteins, 20, 15, and 1 glycosylated protein(s), respectively, were upregulated in the urine of SCLC, LUAD, and LUSC patients. Immunoblotting experiments further demonstrated that cathepsin C and transferrin were significantly upregulated in the ConA-NP purified urine of SCLC patients. This work suggests that glycosylated cathepsin C and transferrin might be able to serve as potential biomarkers for the noninvasive diagnosis of SCLC patients.


Subject(s)
Lung Neoplasms , Nanoparticles , Small Cell Lung Carcinoma , Biomarkers , Biomarkers, Tumor , Chromatography, Liquid , Concanavalin A , Humans , Lung Neoplasms/diagnosis , Magnetic Phenomena , Proteomics , Small Cell Lung Carcinoma/diagnosis , Tandem Mass Spectrometry
12.
Adv Mater ; 33(43): e2104849, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34536044

ABSTRACT

Tumor tissues/cells are the best sources of antigens to prepare cancer vaccines. However, due to the difficulty of solubilization and delivery of water-insoluble antigens in tumor tissues/cells, including water-insoluble antigens into cancer vaccines and delivering such vaccines efficiently to antigen-presenting cells (APCs) remain challenging. To solve these problems, herein, water-insoluble components of tumor tissues/cells are solubilized by 8 m urea and thus whole components of micrometer-sized tumor cells are reasssembled into nanosized nanovaccines. To induce maximized immunization efficacy, various antigens are loaded both inside and on the surface of nanovaccines. By encapsulating both water-insoluble and water-soluble components of tumor tissues/cells into nanovaccines, the nanovaccines are efficiently phagocytosed by APCs and showed better therapeutic efficacy than the nanovaccine loaded with only water-soluble components in melanoma and breast cancer. Anti-PD-1 antibody and metformin can improve the efficacy of nanovaccines. In addition, the nanovaccines can prevent lung cancer (100%) and melanoma (70%) efficiently in mice. T cell analysis and tumor microenvironment analysis indicate that tumor-specific T cells are induced by nanovaccines and both adaptive and innate immune responses against cancer cells are activated by nanovaccines. Overall, this study demonstrates a universal method to make tumor-cell-based nanovaccines for cancer immunotherapy and prevention.


Subject(s)
Immunotherapy
13.
J Proteome Res ; 20(9): 4462-4474, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34420308

ABSTRACT

Indisulam exhibits antitumor activity against several cancer cells. Although the DCAF15-indisulam-RBM39 axis has been well documented in the inhibition of cancer cell growth, it is unknown whether RBM39 degradation alone is the mechanism of action of indisulam. Here, we verified the inhibitory effect of indisulam on the proliferation of gastric cancer cells and its dependence on DCAF15. Proximity-dependent biotin labeling with TurboID and quantitative proteomics revealed that indisulam indeed promoted the interaction between DCAF15 and RBM39. Immunoblotting and immunofluorescence also revealed that indisulam promoted the ubiquitin-mediated RBM39 degradation and RBM39 colocalized with DCAF15 in the nucleus. DCAF15 knockdown almost completely abolished the indisulam-mediated RBM39 reduction. Further knockdown of RBM39 eliminated the effect of DCAF15 on the proliferation of gastric cancer cells upon indisulam treatment. Immunoblotting of gastric tumor tissues confirmed the downregulation of RBM39 by indisulam. Database analysis unveiled that RBM39 was highly expressed in gastric cancer tissues and its high expression significantly shortened the survival time of gastric cancer patients. Taken together, we demonstrated that indisulam enhanced RBM39 ubiquitination and degradation by promoting its interaction with DCAF15, thus inhibiting the proliferation of gastric cancer cells. This work may provide valuable information for drug discovery through proteolysis targeting chimeras. MS data were deposited in ProteomeXchange (Dataset identifier: PXD024168).


Subject(s)
Stomach Neoplasms , Cell Proliferation , Humans , Intracellular Signaling Peptides and Proteins , Proteomics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...